Denoising neural data with state-space smoothing: Method and application
نویسندگان
چکیده
منابع مشابه
Denoising neural data with state-space smoothing: method and application.
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation-Maximization algorithm, to denoise two datasets of local field potentials recorded from mo...
متن کاملTwo-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملSequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models
This paper concerns the use of Sequential Monte Carlo methods (SMC) for smoothing in general state space models. A well known problem when applying the standard SMC technique in the smoothing mode is that the resampling mechanism introduces degeneracy of the approximation in the path-space. However, when performing maximum likelihood estimation via the EM algorithm, all involved functionals wil...
متن کاملStatistical Analysis of Neural Data: State-space Models and Applications to Optimal Voltage Smoothing, Tracking Nonstationarities, and Recursive Decoding *
for help preparing these notes.
متن کاملKernel-Based Laplacian Smoothing Method for 3D Mesh Denoising
In this paper, we present an improved Laplacian smoothing technique for 3D mesh denoising. This method filters directly the vertices by updating their positions. Laplacian smoothing process is simple to implement and fast, but it tends to produce shrinking and oversmoothing effects. To remedy this problem, firstly, we introduce a kernel function in the Laplacian expression. Then, we propose to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience Methods
سال: 2009
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2009.01.013